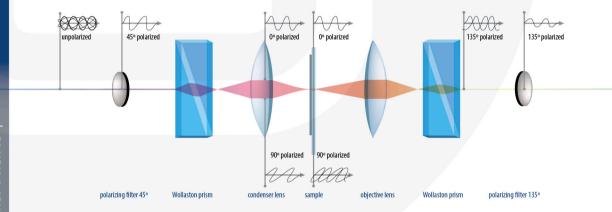
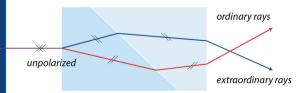
about



differential interference contrast

Differential interference contrast (DIC) technique helps in microscopy to enhance the contrast of samples


The technique is based on interferometry to obtain information about the small difference in optical path length between two orthogonally polarized light rays coming from the sample

This results in an image of the sample appearing as a three-dimensional physical relief. Polarized light is split into two orthogonally polarized coherent light rays by means of a Nomarski-modified Wollaston prism. Subsequently the sample spatially shifts the light rays slightly

By passing a second Nomarski-modified Wollaston prism, the spatially shifted polarized light is recombined. These recombined light rays pass through a second polarization filter that blocks useless direct transmitted light. The interference of the two rays is sensitive to the optical path difference and by introducing an adjustable offset, the contrast is proportional to the path length so that the heights

and depths of the sample appear as three-dimensional objects. Discontinuities on the surface, edges, lines and height differences on the sample create optical path differences that are turned into amplitude / intensity differences in the image, enhancing details in a topographically incorrect way but enables imaging of otherwise invisible details

The Nomarski prism consists of two birefringent crystal wedges cemented together at the hypotenus. One wedge is a Wollaston wedge, the second wedge of the prism is modified by cutting the crystal so that the optical axis is oriented obliquely with respect to the flat surface of the prism